Nonlinear semidefinite programming: sensitivity, convergence, and an application in passive reduced-order modeling
نویسندگان
چکیده
We consider the solution of nonlinear programs with nonlinear semidefiniteness constraints. The need for an efficient exploitation of the cone of positive semidefinite matrices makes the solution of such nonlinear semidefinite programs more complicated than the solution of standard nonlinear programs. This paper studies a sequential semidefinite programming (SSP) method, which is a generalization of the well-known SQP method for standard nonlinear programs. We present a sensitivity result for nonlinear semidefinite programs, and then based on this result, we give a self-contained proof of local quadratic convergence of the SSP method. We also describe a class of nonlinear semidefinite programs that arise in passive reduced-order modeling, and we report results of some numerical experiments with the SSP method applied to problems in that class.
منابع مشابه
Local convergence for sequential semidefinite programming
We examine the local convergence of the sequential semidefinite programming algorithmfor solving optimization problems with nonlinear semidefinite constraints. The papers [1, 2]present a proof of local quadratic convergence of this algorithm under a strong assumption ofa second order sufficient optimality condition for a local minimizer. The present work extendslightly the a...
متن کاملA sensitivity result for quadratic semidefinite programs with an application to a sequential quadratic semidefinite programming algorithm
In this short note a sensitivity result for quadratic semidefinite programming is presented under a weak form of second order sufficient condition. Based on this result, also the local convergence of a sequential quadratic semidefinite programming algorithm extends to this weak second order sufficient condition. Mathematical subject classification: 90C22, 90C30, 90C31, 90C55.
متن کاملA path following interior-point algorithm for semidefinite optimization problem based on new kernel function
In this paper, we deal to obtain some new complexity results for solving semidefinite optimization (SDO) problem by interior-point methods (IPMs). We define a new proximity function for the SDO by a new kernel function. Furthermore we formulate an algorithm for a primal dual interior-point method (IPM) for the SDO by using the proximity function and give its complexity analysis, and then we sho...
متن کاملLocal convergence of an augmented Lagrangian method for matrix inequality constrained programming
We consider nonlinear optimization programs with matrix inequality constraints, also known as nonlinear semidefinite programs. We prove local convergence for an augmented Lagrangian method which uses smooth spectral penalty functions. The sufficient second-order no-gap optimality condition and a suitable implicit function theorem are used to prove local linear convergence without the need to dr...
متن کاملA TRUST-REGION SEQUENTIAL QUADRATIC PROGRAMMING WITH NEW SIMPLE FILTER AS AN EFFICIENT AND ROBUST FIRST-ORDER RELIABILITY METHOD
The real-world applications addressing the nonlinear functions of multiple variables could be implicitly assessed through structural reliability analysis. This study establishes an efficient algorithm for resolving highly nonlinear structural reliability problems. To this end, first a numerical nonlinear optimization algorithm with a new simple filter is defined to locate and estimate the most ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 109 شماره
صفحات -
تاریخ انتشار 2007